CHAPTER TEST

Evaluate the expression without using a calculator.

1.
$$-125^{1/3}$$

2.
$$32^{1/5}$$

3.
$$\sqrt[4]{81}$$

4.
$$\sqrt[3]{27}$$

6.
$$16^{-3/2}$$

7.
$$(\sqrt[3]{-27})^2$$

8.
$$(\sqrt[3]{64})^{-4}$$

Write the expression in simplest form. Assume all variables are positive.

9.
$$\sqrt[3]{88}$$

10.
$$\sqrt[5]{16} \cdot \sqrt[5]{8}$$
 11. $\sqrt{\frac{12}{49}}$

11.
$$\sqrt{\frac{12}{49}}$$

12.
$$\frac{\sqrt[3]{24}}{\sqrt[3]{9}}$$

13.
$$\sqrt[3]{64x^4y^2}$$

13.
$$\sqrt[3]{64x^4y^2}$$
 14. $\sqrt[4]{2x^6y^8z}$ 15. $\sqrt[5]{\frac{x^6}{x^6}}$

15.
$$\sqrt[5]{\frac{x^6}{y^4}}$$

16.
$$\sqrt{\frac{75x^5y^6}{36xz^5}}$$

Let f(x) = 2x + 9 and g(x) = 3x - 1. Perform the indicated operation and state the domain.

17.
$$f(x) + g(x)$$

18.
$$f(x) - g(x)$$
 19. $f(x) \cdot g(x)$

19.
$$f(x) \cdot g(x)$$

20.
$$\frac{f(x)}{g(x)}$$

21.
$$f(g(x))$$

22.
$$g(f(x))$$

23.
$$f(f(x))$$

24.
$$g(g(x))$$

Find the inverse of the function.

25.
$$y = -2x + 5$$

26.
$$y = \frac{1}{3}x + 4$$

27.
$$f(x) = 5x - 12$$

28.
$$y = \frac{1}{2}x^4, x \ge 0$$

29.
$$f(x) = x^3 + 5$$

30.
$$f(x) = -2x^3 + 1$$

Graph the function. Then state the domain and range.

31.
$$y = -6\sqrt[3]{x}$$

32.
$$y = \sqrt{x-4} - 2$$

33.
$$f(x) = -\sqrt[3]{x+3} + 4$$

Solve the equation. Check for extraneous solutions.

34.
$$\sqrt{3x+7}=4$$

35.
$$\sqrt{3x} - \sqrt{x+6} = 0$$

36.
$$x-3=\sqrt{x-1}$$

- **37. KINETIC ENERGY** The kinetic energy *E* (in joules) of a 1250 kilogram compact car is given by the equation $E = 625s^2$ where s is the speed of the car (in meters per second).
 - a. Write an inverse model that gives the speed of the car as a function of its kinetic energy.
 - **b.** Use the inverse model to find the speed of the car if its kinetic energy is 120,000 joules. Give the speed in kilometers per hour.
 - **c.** If the kinetic energy doubles, will the speed double? *Explain* why or why not.
- **38. BOWLING SCORES** In bowling, a *handicap* is a change in score to adjust for differences in players' abilities. You belong to a bowling league in which each bowler's handicap h is determined by his or her average a using this formula:

$$h = 0.9(200 - a)$$

If a bowler's average is over 200, the handicap is 0. Find the inverse of the model. Then find your average if your handicap is 36.