SKILL PRACTICE

- 1. **VOCABULARY** In the exponential growth model $y = 2.4(1.5)^x$, identify the initial amount, the growth factor, and the percent increase.
- 2. **WINITING** What is an asymptote?

EXAMPLES

1 and 2 on pp. 478-479 for Exs. 3-14

MATCHING GRAPHS Match the function with its graph.

3.
$$y = 3 \cdot 2^x$$

4.
$$y = -3 \cdot 2^x$$

5.
$$y = 2 \cdot 3^x$$

GRAPHING FUNCTIONS Graph the function.

6.
$$y = 3^x$$

7.
$$y = -2^x$$

8.
$$f(x) = 5 \cdot 2^x$$

9.
$$y = 5^x$$

10.
$$y = 2 \cdot 4^x$$

11.
$$g(x) = -(1.5)^x$$

12.
$$y = 3\left(\frac{4}{3}\right)^x$$

13.
$$y = \frac{1}{2} \cdot 3^x$$

14.
$$h(x) = -2(2.5)^x$$

EXAMPLE 3

on p. 479 for Exs. 15-24

15.
$$y = -3 \cdot 2^{x+2}$$

16.
$$y = 5 \cdot 4^x + 2$$

$$(17.) y = 2^{x+1} + 3$$

18.
$$y = 3^{x-2} - 1$$

19.
$$y = 2 \cdot 3^{x-2} - 1$$

20.
$$y = -3 \cdot 4^{x-1} - 2$$

21.
$$f(x) = 6 \cdot 2^{x-3} + 3$$

22.
$$g(x) = 5 \cdot 3^{x+2} - 4$$

23.
$$h(x) = -2 \cdot 5^{x-1} + 1$$

24. The graph of which function is shown?

(A)
$$f(x) = 2(1.5)^x - 1$$

B
$$f(x) = 2(1.5)^x + 1$$

©
$$f(x) = 3(1.5)^x - 1$$

D
$$f(x) = 3(1.5)^x + 1$$

25. The student enrollment E of a high school was 1310 in 1998 and has increased by 10% per year since then. Which exponential growth model gives the school's student enrollment in terms of *t*, where *t* is the number of years since 1998?

(A)
$$E = 0.1(1310)^t$$

(B)
$$E = 1310(0.1)^t$$

$$E = 1.1(1310)^t$$

(D)
$$E = 1310(1.1)^t$$