/

Simplify the expression.

1.
$$e^7 \cdot e^4$$

2.
$$2e^{-3} \cdot 6e^{5}$$

3.
$$\frac{24e^8}{4e^5}$$

4.
$$(10e^{-4x})^3$$

5. Use a calculator to evaluate $e^{3/4}$.

KEY CONCEPT

For Your Notebook

Natural Base Functions

A function of the form $y = ae^{rx}$ is called a *natural base exponential function*.

- If a > 0 and r > 0, the function is an exponential growth function.
- If a > 0 and r < 0, the function is an exponential decay function.

The graphs of the basic functions $y = e^x$ and $y = e^{-x}$ are shown below.

EXAMPLE 3

Solution

Graph natural base functions

Graph the function. State the domain and range.

a.
$$y = 3e^{0.25x}$$

b.
$$y = e^{-0.75(x-2)} + 1$$

ANOTHER WAY

You can also write the function from part (a) in the form $y = ab^x$ in order to graph it:

$$v=3e^{0.25x}$$

$$y = 3(e^{0.25})^x$$

$$v \approx 3(1.28)^{x}$$

a. Because a = 3 is positive and r = 0.25 is positive, the function is an exponential growth function. Plot the points (0, 3) and (1, 3.85) and draw the curve.

The domain is all real numbers, and the range is y > 0.

b. a = 1 is positive and r = -0.75 is negative, so the function is an exponential decay function. Translate the graph of $y = e^{-0.75x}$ right 2 units and up 1 unit.

The domain is all real numbers, and the range is y > 1.