Evaluate the logarithm. Use a calculator if necessary.

6.
$$\log_{27} 3$$

9. WHAT IF? Use the function in Example 4 to estimate the wind speed near a tornado's center if its path is 150 miles long.

INVERSE FUNCTIONS By the definition of a logarithm, it follows that the logarithmic function $g(x) = \log_h x$ is the inverse of the exponential function $f(x) = b^x$. This means that:

$$g(f(x)) = \log_b b^x = x$$
 and $f(g(x)) = b^{\log_b x} = x$

EXAMPLE 5 Use inverse properties

Simplify the expression.

a.
$$10^{\log 4}$$

b.
$$\log_5 25^x$$

Solution

a.
$$10^{\log 4} = 4$$

$$b^{\log_b x} = x$$

b.
$$\log_5 25^x = \log_5 (5^2)^x$$

Express 25 as a power with base 5.

$$=\log_5 5^{2x}$$

Power of a power property

$$=2x$$

$$\log_b b^x = x$$

EXAMPLE 6 Find inverse functions

Find the inverse of the function.

a.
$$y = 6^x$$

b.
$$y = \ln (x + 3)$$

REVIEW INVERSES

For help with finding inverses of functions, see p. 437.

Solution

- **a.** From the definition of logarithm, the inverse of $y = 6^x$ is $y = \log_6 x$.
- $y = \ln (x + 3)$ Write original function.

$$x = \ln(y + 3)$$
 Switch x and y.

$$e^{x} = y + 3$$

$$e^{x} - 3 = y$$

▶ The inverse of $y = \ln(x + 3)$ is $y = e^x - 3$.

GUIDED PRACTICE

for Examples 5 and 6

Simplify the expression.

10.
$$8^{\log_8 x}$$

11.
$$\log_7 7^{-3x}$$
 12. $\log_2 64^x$

12.
$$\log_2 64^x$$

13.
$$e^{\ln 20}$$

14. Find the inverse of
$$y = 4^x$$
.

15. Find the inverse of
$$y = \ln (x - 5)$$
.