44. **WHIKEIREASONING** Which of the following statements is *not* correct?

$$\bigcirc$$
 $\log_3 48 = \log_3 16 + \log_3 3$

$$\bigcirc$$
 $\log_3 48 = 3 \log_3 2 + \log_3 6$

$$\bigcirc$$
 $\log_3 48 = 2 \log_3 4 + \log_3 3$ \bigcirc $\log_3 48 = \log_3 8 + 2 \log_3 3$

$$\log_3 48 = \log_3 8 + 2\log_3 3$$

EXAMPLE 4

on p. 509 for Exs. 45-61

CHANGE-OF-BASE FORMULA Use the change-of-base formula to evaluate the logarithm.

45.
$$\log_4 7$$

49.
$$\log_3 6$$

52.
$$\log_2 28$$

55.
$$\log_9 27$$

56.
$$\log_8 32$$

57.
$$\log_6 \frac{24}{5}$$

58.
$$\log_2 \frac{15}{7}$$

59.
$$\log_3 \frac{9}{40}$$

60.
$$\log_7 \frac{3}{16}$$

61. ERROR ANALYSIS Describe and correct the error in using the change-of-base formula.

$$\log_3 7 = \frac{\log 3}{\log 7}$$

EXAMPLE 5

on p. 509 for Exs. 62-63

SOUND INTENSITY In Exercises 62 and 63, use the function in Example 5.

62. Find the decibel level of the sound made by each object shown below.

Ambulance siren: $I = 10^0 \text{ W/m}^2$

Bee: $I = 10^{-6.5} \text{ W/m}^2$

- **63.** The intensity of the sound of a trumpet is 10^3 watts per square meter. Find the decibel level of a trumpet.
- **64.** For each statement, find positive numbers M, N, and *b* (with $b \neq 1$) that show the statement is false in general.

$$\mathbf{a.} \ \log_b (M+N) = \log_b M + \log_b N$$

Barking dog: $I = 10^{-4} \text{ W/m}^2$

b.
$$\log_h (M - N) = \log_h M - \log_h N$$

CHALLENGE In Exercises 65-68, use the given hint and properties of exponents to prove the property of logarithms.

- **65.** Product property $\log_b mn = \log_b m + \log_b n$ (*Hint*: Let $x = \log_b m$ and let $y = \log_h n$. Then $m = b^x$ and $n = b^y$.)
- **66.** Quotient property $\log_b \frac{m}{n} = \log_b m \log_b n$ (*Hint*: Let $x = \log_b m$ and let $y = \log_b n$. Then $m = b^x$ and $n = b^y$.)
- **67.** Power property $\log_b m^n = n \log_b m$ (*Hint*: Let $x = \log_h m$. Then $m = b^x$ and $m^n = b^{nx}$.)
- **68.** Change-of-base formula $\log_c a = \frac{\log_b a}{\log_b c}$ (*Hint*: Let $x = \log_b a$, $y = \log_b c$, and $z = \log_c a$. Then $a = b^x$, $c = b^y$, and $a = c^z$, so that $b^x = c^z$.)