- **40. \rightharpoonup TAKS REASONING** What is (are) the solution(s) of |3x + 7| = 5x?
 - (A) $-4, -\frac{2}{3}$ (B) $-\frac{7}{8}, \frac{7}{2}$ (C) $\frac{7}{8}, \frac{7}{2}$

ERROR ANALYSIS Describe and correct the error in solving the equation.

$$|5x - 9| = x + 3$$

$$5x - 9 = x + 3$$
 or $5x - 9 = -x + 3$

$$4x - 9 = 3$$

$$4x = 12$$
 or $6x = 12$

$$x = 3$$

$$x = 3$$
 or $x = 2$

The solutions are 3 and 2.

$$|n-7| = 3n-1$$

$$n-7=3n-1$$
 or $n-7=-3n+1$

$$4x - 9 = 3$$
 or $6x - 9 = 3$ $-7 = 2n - 1$ or $4n - 7 = 1$

$$-6 = 2n$$
 or $4n = 8$

$$4n = 8$$

$$-3 = n$$
 or $n = 2$

The solutions are -3 and 2.

EXAMPLES 4 and 5

on pp. 53-54 for Exs. 43-63

SOLVING INEQUALITIES Solve the inequality. Then graph the solution.

43.
$$|j| \le 5$$

44.
$$|k| > 4$$

45.
$$|m-2| < 7$$
 46. $|n-11| \ge 1$

46.
$$|n-11| \ge 1$$

47.
$$|d+4| \ge 3$$

48.
$$|f+6| < 2$$

49.
$$|g-1| > 0$$

47.
$$|d+4| \ge 3$$
 48. $|f+6| < 2$ **49.** $|g-1| > 0$ **50.** $|h+10| \le 10$ **51.** $|3w-15| < 30$ **52.** $|2x+6| \ge 10$ **53.** $|4y-9| \le 7$ **54.** $|5z+1| > 14$

51.
$$|3w - 15| < 30$$
 52. $|2x + 6| \ge 10$

52.
$$|2x+6| \ge 10$$

53.
$$|4y - 9| \le 7$$

55.
$$|16 - p| > 3$$
 56. $|24 - q| \le 11$ **57.** $|7 - 2r| < 19$ **58.** $|19 - 5t| > 7$

59.
$$\left| \frac{1}{2}x - 10 \right| < 2$$

60.
$$\left| \frac{1}{2}m - 15 \right| < 6$$

61.
$$\left| \frac{1}{2} y + 2 \right| - 5 > 3$$

59.
$$\left|\frac{1}{2}x - 10\right| \le 4$$
 60. $\left|\frac{1}{3}m - 15\right| < 6$ **61.** $\left|\frac{1}{7}y + 2\right| - 5 > 3$ **62.** $\left|\frac{2}{5}n - 8\right| + 4 \ge 12$

Animated Algebra at classzone.com

- **63. \(\bigsip \) TAKS REASONING** What is the solution of $|6x 9| \ge 33$?
 - (\mathbf{A}) $-4 \le x \le 7$

(B) $-7 \le x \le 4$

 (\mathbf{C}) $x \le -4$ or $x \ge 7$

- (\mathbf{D}) $x \le -7$ or $x \ge 4$
- 64. TAKS REASONING Which absolute value inequality represents the graph shown below?

- **(A)** -1 < |x| < 5 **(B)** |x+2| < 3 **(C)** |x-2| < 3 **(D)** |x-2| < 5
- **65. REASONING** For the equation |ax + b| = c (where a, b, and c are real numbers and $a \neq 0$), describe the value(s) of c that yield two solutions, one solution, and no solution.

SOLVING INEQUALITIES Solve the inequality. Then graph the solution.

- **66.** $|x+1| \ge -16$ **67.** |2x-1| < -25 **68.** $|7x+3| \le 0$
- **69.** |x-9| > 0

CHALLENGE Solve the inequality for x in terms of a, b, and c. Assume a, b, and care real numbers.

- **70.** |ax + b| < c where a > 0
- 71. $|ax + b| \ge c$ where a > 0
- **72.** $|ax + b| \le c$ where a < 0
- **73.** |ax + b| > c where a < 0