EXAMPLE 5 Multiply a rational expression by a polynomial

Multiply:
$$\frac{x+2}{x^3-27} \cdot (x^2+3x+9)$$

$$\frac{x+2}{x^3-27} \cdot (x^2+3x+9) = \frac{x+2}{x^3-27} \cdot \frac{x^2+3x+9}{1}$$
 Write polynomial as a rational expression.
$$= \frac{(x+2)(x^2+3x+9)}{(x-3)(x^2+3x+9)}$$
 Factor denominator.
$$= \frac{(x+2)(x^2+3x+9)}{(x-3)(x^2+3x+9)}$$
 Divide out common factor.
$$= \frac{x+2}{x-3}$$
 Simplified form

Factor denominator.

Divide out common factors.

Simplified form

GUIDED PRACTICE for Examples 3, 4, and 5

Multiply the expressions. Simplify the result.

8.
$$\frac{3x^5y^2}{8xy} \cdot \frac{6xy^2}{9x^3y}$$

9.
$$\frac{2x^2-10x}{x^2-25} \cdot \frac{x+3}{2x^2}$$

8.
$$\frac{3x^5y^2}{8xy} \cdot \frac{6xy^2}{9x^3y}$$
 9. $\frac{2x^2 - 10x}{x^2 - 25} \cdot \frac{x+3}{2x^2}$ **10.** $\frac{x+5}{x^3-1} \cdot (x^2+x+1)$

KEY CONCEPT

For Your Notebook

Dividing Rational Expressions

To divide one rational expression by another, multiply the first rational expression by the reciprocal of the second rational expression.

Let a, b, c, and d be expressions with $b \neq 0$, $c \neq 0$ and $d \neq 0$.

Property
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$
 Simplify $\frac{ad}{bc}$ if possible.

Examples
$$\frac{2}{5} \div \frac{7}{3} = \frac{2}{5} \cdot \frac{3}{7} = \frac{6}{35}$$

$$\frac{7}{x+1} \div \frac{x+2}{2x-3} = \frac{7}{x+1} \cdot \frac{2x-3}{x+2} = \frac{7(2x-3)}{(x+1)(x+2)}$$

EXAMPLE 6 Divide rational expressions

Divide:
$$\frac{7x}{2x-10} \div \frac{x^2-6x}{x^2-11x+30}$$

$$\frac{7x}{2x-10} \div \frac{x^2-6x}{x^2-11x+30} = \frac{7x}{2x-10} \cdot \frac{x^2-11x+30}{x^2-6x}$$
$$= \frac{7x}{2(x-5)} \cdot \frac{(x-5)(x-6)}{x(x-6)}$$
$$= \frac{7x(x-5)(x-6)}{2(x-5)(x)(x-6)}$$

Multiply by reciprocal.

Divide out common factors.

$$=\frac{7}{2}$$

Simplified form