9.3 EXERCISES

- = WORKED-OUT SOLUTIONS on p. WS1 for Exs. 17, 39, and 65
- **TAKS PRACTICE AND REASONING**Exs. 21, 43, 59, 64, 66, 70, and 71
 - = MULTIPLE REPRESENTATIONS Ex. 68

SKILL PRACTICE

- **1. VOCABULARY** The radius of a circle is the distance from any point on the circle to a fixed point called the circle's _?_.
- **2. WRITING** How are the slope of a line tangent to a circle and the slope of the radius at the point of tangency related?

EXAMPLE 1

on p. 626 for Exs. 3–21 **MATCHING GRAPHS** Match the equation with its graph.

3.
$$x^2 + y^2 = 9$$

4.
$$x^2 + y^2 = 36$$

5.
$$x^2 + y^2 = 4$$

6.
$$x^2 + y^2 = 6$$

7.
$$x^2 + y^2 = 16$$

8.
$$x^2 + y^2 = 3$$

GRAPHING Graph the equation. Identify the radius of the circle.

9.
$$x^2 + y^2 = 1$$

10.
$$x^2 + y^2 = 81$$

11.
$$x^2 + y^2 = 25$$

12.
$$x^2 + y^2 = 12$$

13.
$$v^2 = 27 - x^2$$

14.
$$x^2 = -y^2 + 40$$

15.
$$x^2 = 15 - y^2$$

16.
$$y^2 = -x^2 + 9$$

$$(17.) 15x^2 + 15y^2 = 60$$

18.
$$7x^2 + 7y^2 = 112$$

19.
$$4x^2 + 4y^2 = 128$$

20.
$$8x^2 + 8y^2 = 192$$

- 21. \rightarrow TAKS REASONING What is the radius of the circle $3x^2 + 3y^2 = 54$?
 - **(A)** $3\sqrt{2}$
- **B** $3\sqrt{6}$
- **©** 18
- **D** 54

EXAMPLE 2

on p. 627 for Exs. 22–43

- **WRITING EQUATIONS** Write the standard form of the equation of the circle with the given radius and whose center is the origin.
- **22.** 12
- **23.** 8

24. 2

25. 16

- **26.** $\sqrt{2}$
- **27.** $\sqrt{15}$
- **28.** $5\sqrt{2}$
- **29.** $4\sqrt{6}$

30. ERROR ANALYSIS *Describe* and correct the error in writing an equation of the circle with the given center and radius.

Center: (0, 0); Radius: 12 Equation: $x^2 + y^2 = 12$