If θ is an acute angle of a right triangle and $\sin \theta = \frac{3}{8}$, what is $\tan \theta$?

- **A** $\frac{3\sqrt{55}}{55}$
- **©** $\frac{\sqrt{55}}{8}$
- \bigcirc $\frac{8}{3}$

Solution

STEP 1 Draw a right triangle with acute angle θ such that the leg opposite θ has length 3 and the hypotenuse has length 8. By the Pythagorean theorem, the length x of the other leg is $x = \sqrt{8^2 - 3^2} = \sqrt{55}$.

STEP 2 Find the value of tan θ .

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{3}{\sqrt{55}} = \frac{3\sqrt{55}}{55}$$

▶ The correct answer is A. (A) (B) (C) (D)

GUIDED PRACTICE

for Examples 1 and 2

Evaluate the six trigonometric functions of the angle θ .

1.

2.

3

4. In a right triangle, θ is an acute angle and $\cos \theta = \frac{7}{10}$. What is $\sin \theta$?

SPECIAL ANGLES The angles 30° , 45° , and 60° occur frequently in trigonometry. You can use the trigonometric values for these angles to find unknown side lengths in special right triangles.

KEY CONCEPT

For Your Notebook

Trigonometric Values for Special Angles

The table below gives the values of the six trigonometric functions for the angles 30°, 45°, and 60°. You can obtain these values from the triangles shown.

θ	$\sin \theta$	$\cos \theta$	$tan \theta$	$\csc \theta$	sec θ	$\cot \theta$
30°	1/2	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\sqrt{3}}{2}$	1/2	√3	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$