KEY CONCEPT ## For Your Notebook ## **Reference Angle Relationships** **READING**The symbol θ' is read as "theta prime." Let θ be an angle in standard position. The **reference angle** for θ is the acute angle θ' formed by the terminal side of θ and the x-axis. The relationship between θ and θ' is shown below for nonquadrantal angles θ such that $$90^{\circ} < \theta < 360^{\circ} \left(\frac{\pi}{2} < \theta < 2\pi \right).$$ Degrees: $\theta' = 180^{\circ} - \theta$ Radians: $\theta' = \pi - \theta$ Degrees: $\theta' = \theta - 180^{\circ}$ Radians: $\theta' = \theta - \pi$ Degrees: $\theta' = 360^{\circ} - \theta$ Radians: $\theta' = 2\pi - \theta$ # EXAMPLE 3 ## **Find reference angles** Find the reference angle θ' for (a) $\theta = \frac{5\pi}{3}$ and (b) $\theta = -130^{\circ}$. #### **Solution** - **a.** The terminal side of θ lies in Quadrant IV. So, $\theta' = 2\pi \frac{5\pi}{3} = \frac{\pi}{3}$. - **b.** Note that θ is coterminal with 230°, whose terminal side lies in Quadrant III. So, $\theta' = 230^{\circ} 180^{\circ} = 50^{\circ}$. **EVALUATING TRIGONOMETRIC FUNCTIONS** Reference angles allow you to evaluate a trigonometric function for any angle θ . The sign of the trigonometric function value depends on the quadrant in which θ lies. #### For Your Notebook **KEY CONCEPT Evaluating Trigonometric Functions** Use these steps to evaluate a **Signs of Function Values** trigonometric function for any angle θ : Quadrant II ♠ y Quadrant I $\sin \theta$, $\csc \theta$: + $\sin \theta$, $\csc \theta$: + **STEP 1** Find the reference angle θ' . $\cos \theta$, $\sec \theta$: - $\cos \theta$, $\sec \theta$: + **Evaluate** the trigonometric $\tan \theta$, $\cot \theta$: – $\tan \theta$, $\cot \theta$: + function for θ' . Quadrant III Quadrant IV **Determine** the sign of the $\sin \theta$, $\csc \theta$: - $\sin \theta$, $\csc \theta$: trigonometric function value $\cos \theta$, $\sec \theta$: - $\cos \theta$, $\sec \theta$: + from the quadrant in which $\tan \theta$, $\cot \theta$: + $\tan \theta$, $\cot \theta$: – θ lies.