Amplitude and Period

The amplitude and period of the graphs of $y = a \sin bx$ and $y = a \cos bx$, where a and b are nonzero real numbers, are as follows:

Amplitude =
$$|a|$$

Period =
$$\frac{2\pi}{|b|}$$

GRAPHING KEY POINTS Each graph below shows five key x-values on the interval $0 \le x \le \frac{2\pi}{b}$ that you can use to sketch the graphs of $y = a \sin bx$ and $y = a \cos bx$ for a > 0 and b > 0. These are the x-values where the **maximum** and **minimum** values occur and the x-intercepts.

EXAMPLE 1

Graph sine and cosine functions

Graph (a) $y = 4 \sin x$ and (b) $y = \cos 4x$.

VARY CONSTANTS

Notice how changes in a and b affect the graphs of $y = a \sin bx$ and $y = a \cos bx$. When the value of a increases, the amplitude increases. When the value of b increases, the period decreases.

Solution

a. The amplitude is
$$a=4$$
 and the period is $\frac{2\pi}{b} = \frac{2\pi}{1} = 2\pi$.

Intercepts:
$$(0,0)$$
; $(\frac{1}{2} \cdot 2\pi, 0) = (\pi, 0)$; $(2\pi, 0)$

Maximum:
$$\left(\frac{1}{4} \cdot 2\pi, 4\right) = \left(\frac{\pi}{2}, 4\right)$$

Minimum:
$$\left(\frac{3}{4} \cdot 2\pi, -4\right) = \left(\frac{3\pi}{2}, -4\right)$$

b. The amplitude is
$$a = 1$$
 and the period is $\frac{2\pi}{b} = \frac{2\pi}{4} = \frac{\pi}{2}$.

Intercepts:
$$\left(\frac{1}{4} \cdot \frac{\pi}{2}, 0\right) = \left(\frac{\pi}{8}, 0\right); \left(\frac{3}{4} \cdot \frac{\pi}{2}, 0\right) = \left(\frac{3\pi}{8}, 0\right)$$

Maximums: $(0, 1); (\frac{\pi}{2}, 1)$

/

GUIDED PRACTICE

for Example 1

Graph the function.

1.
$$y = 2 \cos x$$

2.
$$y = 5 \sin x$$

3.
$$f(x) = \sin \pi x$$

$$4. \ g(x) = \cos 4\pi x$$