GRAPHING Graph the function.

6.
$$y = \sin \frac{1}{5}x$$

7.
$$y = 4 \cos x$$

6.
$$y = \sin \frac{1}{5}x$$
 7. $y = 4 \cos x$ **8.** $f(x) = \cos \frac{2}{5}x$ **9.** $y = \sin \pi x$

$$9. \ y = \sin \pi x$$

10.
$$f(x) = \frac{2}{3} \sin x$$
 11. $f(x) = \sin \frac{\pi}{2} x$ **12.** $y = \frac{\pi}{4} \cos x$ **13.** $f(x) = \cos 24x$

$$11. \ f(x) = \sin \frac{\pi}{2} x$$

12.
$$y = \frac{\pi}{4} \cos x$$

$$\mathbf{13.} \ f(x) = \cos 24x$$

14. ERROR ANALYSIS *Describe* and correct the error in finding the period of the function $y = \sin \frac{2}{3}x$.

Period =
$$\frac{\left|b\right|}{2\pi} = \frac{\left|\frac{2}{3}\right|}{2\pi} = \frac{1}{3\pi}$$

15. TAKS REASONING The graph of which function has an amplitude of 4 and a period of 2?

$$(\mathbf{A})$$
 $y = 4 \cos 2x$

$$\mathbf{B}$$
 $y = 2 \sin 4x$

(A)
$$y = 4 \cos 2x$$
 (B) $y = 2 \sin 4x$ **(C)** $y = 4 \sin \pi x$ **(D)** $y = 2 \cos \frac{1}{2} \pi x$

EXAMPLES 2, 3, and 4 on pp. 910-912 for Exs. 16-24

GRAPHING Graph the function.

16.
$$y = 2 \sin 8x$$

$$(17.) f(x) = 4 \tan x$$

18.
$$y = 3 \cos \pi x$$

19.
$$v = 5 \sin 2x$$

20.
$$f(x) = 2 \tan 4x$$

16.
$$y = 2 \sin 8x$$
 17. $f(x) = 4 \tan x$ **18.** $y = 3 \cos \pi x$ **19.** $y = 5 \sin 2x$ **20.** $f(x) = 2 \tan 4x$ **21.** $y = 2 \cos \frac{1}{4} \pi x$ **22.** $f(x) = 4 \tan \pi x$ **23.** $y = \pi \cos 4\pi x$

22.
$$f(x) = 4 \tan \pi x$$

23.
$$y = \pi \cos 4\pi x$$

24. TAKS REASONING Which of the following is an asymptote of the graph of $y = 2 \tan 3x$?

(A)
$$x = \frac{\pi}{6}$$

©
$$x = \frac{1}{6}$$

(A)
$$x = \frac{\pi}{6}$$
 (B) $x = -\pi$ **(C)** $x = \frac{1}{6}$ **(D)** $x = -\frac{\pi}{12}$

25. TAKS REASONING Describe a real-life situation that can be modeled by a periodic function.

CHALLENGE Sketch the graph of the function by plotting points. Then state the function's domain, range, and period.

26.
$$y = \csc x$$

27.
$$y = \sec x$$

28.
$$y = \cot x$$

PROBLEM SOLVING

EXAMPLE 3

on p. 910 for Exs. 29-30 29. **PENDULUMS** The motion of a certain pendulum can be modeled by the function $d = 4 \cos \pi t$ where d is the pendulum's horizontal displacement (in inches) relative to its position at rest and *t* is the time (in seconds). Graph the function. What is the greatest horizontal distance the pendulum will travel from its position at rest?

TEXAS @HomeTutor for problem solving help at classzone.com

30. TUNING FORKS A tuning fork produces a sound pressure wave that can be modeled by

$$P = 0.001 \sin 880t$$

where *P* is the pressure (in pascals) and *t* is the time (in seconds). Find the period and frequency of this function. Then graph the function.

TEXAS @HomeTutor for problem solving help at classzone.com

