7 Translate and Reflect **Trigonometric Graphs**

Before

You graphed sine, cosine, and tangent functions.

Now

You will translate and reflect trigonometric graphs.

Why?

So you can model predator-prey populations, as in Ex. 54.

Key Vocabulary

- translation, p. 123
- **reflection**, *p. 124*
- **amplitude**, p. 908
- **period**, p. 908

KEY CONCEPT

For Your Notebook

Translations of Sine and Cosine Graphs

To graph $y = a \sin b(x - h) + k$ or $y = a \cos b(x - h) + k$ where a > 0 and b > 0, follow these steps:

- **STEP 1** Identify the amplitude a, the period $\frac{2\pi}{h}$, the horizontal shift h, and the vertical shift k of the graph.
- **STEP 2 Draw** the horizontal line y = k, called the *midline* of the graph.
- **STEP 3** Find the five key points by translating the key points of $y = a \sin bx$ or $y = a \cos bx$ horizontally h units and vertically k units.
- **STEP 4 Draw** the graph through the five translated key points.

EXAMPLE 1

Graph a vertical translation

Graph
$$y = 2 \sin 4x + 3$$
.

Solution

Identify the amplitude, period, horizontal shift, and vertical shift.

Amplitude: a = 2

Horizontal shift: h = 0

Period: $\frac{2\pi}{h} = \frac{2\pi}{4} = \frac{\pi}{2}$ Vertical shift: k = 3

- **STEP 2** Draw the midline of the graph, y = 3.
- **STEP 3** Find the five key points.

On y = k: (0, 0 + 3) = (0, 3);

$$\left(\frac{\pi}{4}, 0 + 3\right) = \left(\frac{\pi}{4}, 3\right); \left(\frac{\pi}{2}, 0 + 3\right) = \left(\frac{\pi}{2}, 3\right)$$

Maximum: $\left(\frac{\pi}{8}, 2 + 3\right) = \left(\frac{\pi}{8}, 5\right)$

Minimum: $\left(\frac{3\pi}{8}, -2 + 3\right) = \left(\frac{3\pi}{8}, 1\right)$

STEP 4 Draw the graph through the key points.

FIND KEY POINTS

Because the graph is shifted up 3 units, the