

Graph the function.

1.
$$y = \cos x + 4$$

2.
$$y = 3 \sin \left(x - \frac{\pi}{2} \right)$$

2.
$$y = 3 \sin \left(x - \frac{\pi}{2}\right)$$
 3. $f(x) = \sin (x + \pi) - 1$

REFLECTIONS You have graphed functions of the form $y = a \sin b(x - h) + k$ and $y = a \cos b(x - h) + k$ where a > 0. To see what happens when a < 0, consider the graphs of $y = -\sin x$ and $y = -\cos x$.

Notice that the graphs are reflections of the graphs of $y = \sin x$ and $y = \cos x$ in the *x*-axis. In general, when a < 0 the graphs of $y = a \sin b(x - h) + k$ and $y = a \cos b(x - h) + k$ are reflections of the graphs of $y = |a| \sin b(x - h) + k$ and $y = |a| \cos b(x - h) + k$, respectively, in the midline y = k.

EXAMPLE 4

Combine a translation and a reflection

Graph
$$y = -2 \sin \frac{2}{3} \left(x - \frac{\pi}{2}\right)$$
.

Solution

Identify the amplitude, period, horizontal shift, and vertical shift.

Amplitude: |a| = |-2| = 2Horizontal shift: $h = \frac{\pi}{2}$

Period: $\frac{2\pi}{b} = \frac{2\pi}{\frac{2}{a}} = 3\pi$ Vertical shift: k = 0

STEP 2 Draw the midline of the graph. Because k = 0, the midline is the x-axis.

STEP 3 Find the five key points of $y = \left| -2 \right| \sin \frac{2}{3} \left(x - \frac{\pi}{2} \right)$.

On y = k: $\left(0 + \frac{\pi}{2}, 0\right) = \left(\frac{\pi}{2}, 0\right)$; $\left(\frac{3\pi}{2} + \frac{\pi}{2}, 0\right) = (2\pi, 0)$; $\left(3\pi + \frac{\pi}{2}, 0\right) = \left(\frac{7\pi}{2}, 0\right)$

Maximum: $\left(\frac{3\pi}{4} + \frac{\pi}{2}, 2\right) = \left(\frac{5\pi}{4}, 2\right)$ **Minimum:** $\left(\frac{9\pi}{4} + \frac{\pi}{2}, -2\right) = \left(\frac{11\pi}{4}, -2\right)$

REFLECTIONS The maximum and minimum of the

GRAPH

original graph become the minimum and maximum, respectively, of the reflected graph.

STEP 5 Draw the graph through the key points.

Animated Algebra at classzone.com