APTER TEST

Graph the function.

1.
$$f(x) = 4 \cos 2x$$

2.
$$y = \frac{3}{2} \sin \pi x$$

2.
$$y = \frac{3}{2} \sin \pi x$$
 3. $f(x) = -4 \tan \frac{\pi}{2} x$

4.
$$y = \sin(x - \pi) - 2$$

5.
$$f(x) = 3 \tan \left(x - \frac{\pi}{2}\right)$$

4.
$$y = \sin(x - \pi) - 2$$
 5. $f(x) = 3\tan\left(x - \frac{\pi}{2}\right)$ **6.** $y = -2\cos\frac{1}{3}x + 3$

Simplify the expression.

7.
$$\frac{\sin(-\theta)}{\tan(-\theta)}$$

8.
$$\cos^2 x + \sin^2 x - \csc^2 x$$
 9. $\frac{\sin(\frac{\pi}{2} - x)}{\sec x}$

9.
$$\frac{\sin\left(\frac{\pi}{2}-x\right)}{\sec x}$$

Write a function for the sinusoid.

10.

11.

12. Verify the identity $\cos 3x = 4 \cos^3 x - 3 \cos x$.

Solve the equation in the interval $0 \le x < 2\pi$.

13.
$$9 \sin^2 x \tan x = 16 \tan x$$

13.
$$9 \sin^2 x \tan x = 16 \tan x$$
 14. $(1 - \tan^2 x) \tan 2x = 2\sqrt{3}$ **15.** $\sin \frac{x}{2} = \frac{\sqrt{2}}{2}$

15.
$$\sin \frac{x}{2} = \frac{\sqrt{2}}{2}$$

Find the general solution of the equation.

16.
$$6 \tan^2 x - 2 = 0$$

17.
$$\cos x = \sin 2x \sin x$$

17.
$$\cos x = \sin 2x \sin x$$
 18. $\sin \frac{x}{2} = 1 - \cos x$

Find the exact value of the expression.

20.
$$\cos\left(-\frac{\pi}{8}\right)$$
 21. $\tan\frac{5\pi}{12}$

21.
$$\tan \frac{5\pi}{12}$$

22.
$$\sin \frac{10\pi}{3}$$

- 23. **BOATING** The paddle wheel of a ship is 11 feet in diameter, revolves 15 times per minute when moving at top speed, and is 2 feet below the water's surface at its lowest point. Using this speed and starting from a point at the very top of the wheel, write a model for the height h (in feet) of the end of the paddle relative to the water's surface as a function of time t (in minutes).
- **24. PRECIPITATION** The table below shows the monthly precipitation *P* (in inches) in Bismarck, North Dakota. The time *t* is measured in months, with t = 1 representing January. Use a graphing calculator to write a sinusoidal model that gives *P* as a function of *t*.

-						5							
	P	0.5	0.5	0.9	1.5	2.2	2.6	2.6	2.2	1.6	1.3	0.7	0.4