Pre-AP Algebra II – Semester Review Fall 2010

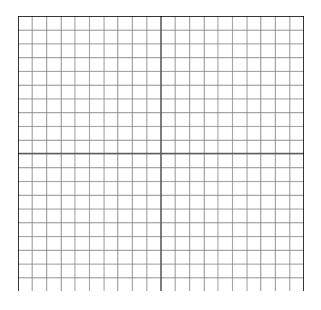
Name ______ Date _____

Determine whether the relation is a function. Explain:

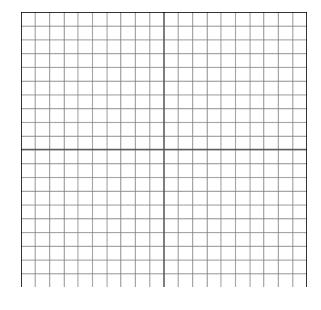
1.
$$(-3,4),(2,5),(1,0),(0,4),(-2,-3),(3,6)$$

What is the slope of the line identified by: (TAKS Obj. 3)

2.
$$3y = -6(x + 2)$$


Write an equation of the line that passes through the given point and satisfies the given condition.

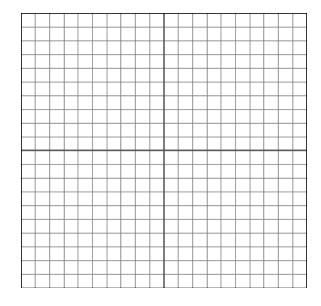
3.
$$(10,2)$$
; parallel to $y = -5x + 7$

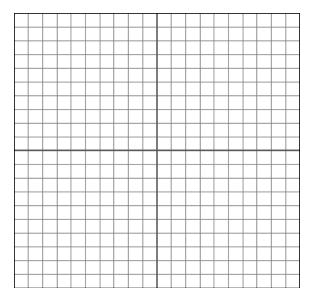


Graph each of the following.

4.
$$x + 2y = 6$$

5.
$$y < |x - 3| + 1$$




Graph the linear system.

Then check the solution algebraically.

6.
$$\begin{cases} x + 2y = -6 \\ -6x - 2y = -14 \end{cases}$$

$$7. \begin{cases} 2x + y < 6 \\ y > -2 \end{cases}$$

Solve the system by *Substitution*:

8.
$$\begin{cases} 3x + y = -9 \\ x - 2y = -10 \end{cases}$$

Solve the system by *Elimination*:

9.
$$\begin{cases} 2x - 3y = 15 \\ 2x - 3y = -6 \end{cases}$$

Use the given matrices to evaluate the expression (if possible):

$$A = \begin{bmatrix} 1 & -2 \\ 4 & -3 \end{bmatrix},$$

$$B = \begin{bmatrix} 3 & 5 \\ -1 & 0 \end{bmatrix},$$

$$C = \begin{bmatrix} -1 & 3 & -2 \\ 2 & 0 & -1 \end{bmatrix}$$

10.
$$2A + B$$

Evaluate the determinant of the matrix.

12.
$$\begin{bmatrix} -4 & 5 \\ 2 & -1 \end{bmatrix}$$

13.
$$\begin{bmatrix} -1 & 3 & 1 \\ 0 & 2 & -3 \\ 5 & 1 & -2 \end{bmatrix}$$

Use an inverse matrix to solve the linear system.

14.
$$\begin{cases} 2x - 7y = -36 \\ x - 3y = -16 \end{cases}$$

Solve the following system by *Elimination*:

15.
$$\begin{cases} x + y + z = 3 \\ -x + 3y + 2z = -8 \\ 5y + z = 2 \end{cases}$$

16. The solution of which system is (0, 4)? (TAKS Obj. 4)

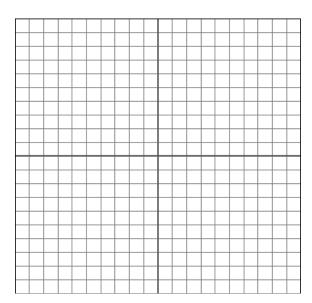
$$A \begin{cases} x + y = 4 \\ x - y = 4 \end{cases}$$

$$B \begin{cases} 2x + y = -4 \\ x - 2y = 8 \end{cases}$$

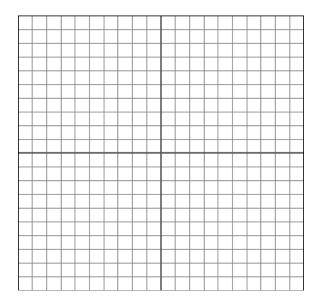
$$C \begin{cases} 3x + 2y = 8 \\ x - 4y = -16 \end{cases}$$

$$A \begin{cases} x + y = 4 \\ x - y = 4 \end{cases} \qquad B \begin{cases} 2x + y = -4 \\ x - 2y = 8 \end{cases} \qquad C \begin{cases} 3x + 2y = 8 \\ x - 4y = -16 \end{cases} \qquad D \begin{cases} 2x + y = 4 \\ 3x - 2y = 12 \end{cases}$$

Find the vertex, axis of symmetry, and graph the function.


17.
$$y = -(x+3)^2 + 5$$

18.
$$f(x) = 2(x+4)(x-2)$$


Vertex:

Vertex: _____

Axis of Symmetry:_____

Axis of Symmetry:_____

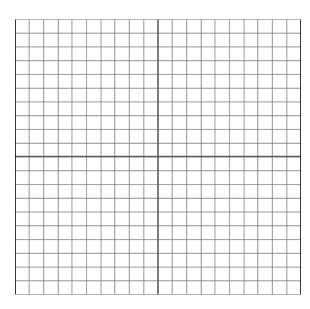
Solve the following by factoring:

Factor the expression.

$$2x - 15 20. 2w^2 = -13w - 7$$

19.
$$x^2 + 2x - 15$$

Solve the equation by completing the square:


21.
$$4x^2 + 8x + 3 = 0$$

Use the quadratic formula to solve the equation:

22.
$$2x^2 = x - 6$$

Graph the inequality:

23.
$$y < x^2 + 4x - 21$$

24. What are the x-intercepts of the graph of the equation $y=x^2-x-30$? (TAKS Obj. 2)

$$A \ x = 5, x = 6$$

$$B \ x = -5, x = 6$$

$$C x = 5, x = -6$$

$$D x = -5, x = -6$$

Use the properties of exponents to simplify the following:

25.
$$(2x^{-2}y^3)^5$$

26.
$$\left(\frac{x^{-4}}{y^2}\right)^{-2}$$

Factor the polynomial completely.

27.
$$x^4 + 5x^2 - 6$$

28.
$$x^3 - 3x^2 - 4x + 12$$

Perform the indicated operation.

29.
$$(3x-2)(x^2+4x-7)$$

30.
$$(3x^3 - 14x^2 + 16x - 22) \div (x - 4)$$

Find list of all possible zeros and find all the *real zeros*:

31.
$$f(x) = x^3 + x^2 - 22x - 40$$

List of Possible Zeros:

Actual Real Zeros:

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros: (TAKS Obj. 3)

32. 6, 2*i*

33. The height h above the ground (in feet) of a stuntman falling from a window is given by $y = -16t^2 + 90$ where t is the time (in seconds). An air cushion that is 9 feet high is positioned on the ground below the window. About how many seconds will the stuntman fall before the shits the air cushion? (TAKS Obj. 5)

A 2.25 sec

B 2.37 sec

C 8.66 sec

D 9.48 sec
